Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Appl Microbiol ; 133(6): 3719-3727, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2291808

ABSTRACT

AIMS: This study aimed to determine the extent of Phi6 (Φ6) transfer between skin and surfaces relevant to consumer-facing environments based on inoculum matrix, surface type and contact time. METHODS AND RESULTS: Φ6 transfer rates were determined from skin-to-fomite and fomite-to-skin influenced by inoculum matrix (artificial saliva and tripartite), surface type (aluminium, plastic, stainless steel, touchscreen, vinyl and wood) and contact time (5 and 10 s). Significant differences in estimated means were observed based on surface type (both transfer directions), inoculum matrix (skin-to-fomite) and contact time (both transfer directions). During a sequential transfer experiment from fomite-to-skin, the maximum number of consecutive transfer events observed was 3.33 ± 1.19, 2.33 ± 1.20 and 1.67 ± 1.21 for plastic, touchscreen and vinyl, respectively. CONCLUSIONS: Contact time significantly impacted Φ6 transfer rates, which may be attributed to skin absorption dynamics. Surface type should be considered for assessing Φ6 transfer rates. SIGNIFICANCE AND IMPACT OF THE STUDY: Although the persistence of Φ6 on fomites has been characterized, limited data are available regarding the transfer of Φ6 among skin and fomites. Determining Φ6 transfer rates for surfaces in consumer-facing environments based on these factors is needed to better inform future virus transmission mitigation strategies.


Subject(s)
Bacteriophages , Humans , Fomites , Stainless Steel , Plastics
2.
Food Environ Virol ; 15(2): 116-122, 2023 06.
Article in English | MEDLINE | ID: covidwho-2209556

ABSTRACT

Indirect contact with contaminated surfaces is a potential transmission route for COVID-19. Therefore, it is necessary to investigate convenient and inexpensive surface sanitization methods, such as HOCl, against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 surrogate, Phi6 (~ 7 log PFU/mL), was prepared in artificial saliva and tripartite matrices, spot inoculated on coupons of either stainless steel or vinyl, and allowed to dry. The coupons were sprayed with either 500 ppm or 1000 ppm HOCl, and remained on the surface for 0 s (control), 5 s, 30 s, or 60 s. Samples were enumerated via the double agar overlay assay. Statistical analysis was completed in R using a generalized linear model with Quasipoisson error approximations. Time, concentration, surface type, and inoculum matrix were all significant contributors to log reduction at P = 0.05. Significant three-way interactions were observed for 1000 ppm, vinyl, and 60 s (P = 0.03) and 1000 ppm, tripartite, and 60 s (P = 0.0121). A significant two-way interaction between vinyl and 60 s was also observed (P = 0.0168). Overall, increased HOCl concentration and exposure time led to increased Phi6 reduction. Notably, the highest estimated mean log reduction was 3.31 (95% CI 3.14, 3.49) for stainless steel at 60 s and 1000 ppm HOCl in artificial saliva, indicating that this method of sanitization may not adequately reduce enveloped viruses to below infective thresholds.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Hypochlorous Acid , Saliva, Artificial , Stainless Steel/analysis
SELECTION OF CITATIONS
SEARCH DETAIL